RANK PROBABILITIES FOR REAL RANDOM N x N x 2 TENSORS

نویسندگان

  • Goran Bergqvist
  • PETER J. FORRESTER
  • GÖRAN BERGQVIST
چکیده

We prove that the probability PN for a real random Gaussian N ×N ×2 tensor to be of real rank N is PN = (Γ((N + 1)/2))N/G(N + 1), where Γ(x), G(x) denote the gamma and Barnes G-functions respectively. This is a rational number for N odd and a rational number multiplied by πN/2 for N even. The probability to be of rank N + 1 is 1− PN . The proof makes use of recent results on the probability of having k real generalized eigenvalues for real random Gaussian N×N matrices. We also prove that log PN = (N2/4) log(e/4) + (log N − 1)/12− ζ′(−1) +O(1/N) for large N , where ζ is the Riemann zeta function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact probabilities for typical ranks of 2 × 2 × 2 and 3 × 3 × 2 tensors

We show that the probability to be of rank 2 for a 2× 2× 2 tensor with elements from a standard normal distribution is π/4, and that the probability to be of rank 3 for a 3× 3× 2 tensor is 1/2. In the proof results on the expected number of real generalized eigenvalues of random matrices are applied. For n × n × 2 tensors with n ≥ 4 we also present some new aspects of their rank.

متن کامل

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

Domain of attraction of normal law and zeros of random polynomials

Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...

متن کامل

Relative Error Tensor Low Rank Approximation

We consider relative error low rank approximation of tensors with respect to the Frobenius norm. Namely, given an order-q tensor A ∈ R ∏q i=1 ni , output a rank-k tensor B for which ‖A − B‖F ≤ (1 + ) OPT, where OPT = infrank-k A′ ‖A − A‖F . Despite much success on obtaining relative error low rank approximations for matrices, no such results were known for tensors. One structural issue is that ...

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011